

OPTIFLUX 4000 Technical Datasheet

Electromagnetic flow sensor

- Standard flow sensor for the process industry
- For demanding applications: High temperatures, low conductivity, hazardous areas
- Robust and reliable

The documentation is only complete when used in combination with the relevant documentation for the converter.

1	Product features	3
	1.1 Standard solution for the process industry1.2 Options1.3 Measuring principle	5
2	Technical data	8
	 2.1 Technical data 2.2 Vacuum load 2.3 MI-001 2.4 MI-005 2.5 OIML R49 2.6 OIML R117 2.7 Dimensions and weights	
3	Installation	23
	 3.1 Intended use	23 23 23 24 24 24 24 24 25 25 25 26 26 26 26 26
4	Electrical connections	28
5	 4.1 Safety instructions 4.2 Grounding 4.3 Virtual reference for IFC 300 (C, W and F version) Notes 	
_		

1.1 Standard solution for the process industry

The **OPTIFLUX 4000** electromagnetic flow sensor is the standard in the process industry and suitable even for demanding applications.

- 1 All hazardous area approvals
- ② Housing and flanges available in stainless steel
 ③ Most dimensionally stable PFA liner with stainless steel mesh

Highlights

- Standard device in the process industry
- Robust and reliable
- More than 300,000 units operating in the field
- Works reliably under demanding conditions: High temperatures (up to 180°C / 356°F) and low conductivity (non-water from 1 μS/cm, water from 20 μS/cm)
- Quick and easy to install and operate
- Chemically resistant to alkaline solutions and acids

Industries

- Chemicals
- Pulp & Paper
- Water
- Wastewater
- Minerals & Mining
- Iron, Steel & Metals
- Pharmaceuticals
- Oil & gas

Applications

- For clean liquids
- For slurries and pastes with high solids content
- For abrasive and aggressive products

PRODUCT FEATURES 1

1.2 Options

The solution for any industry

The OPTIFLUX 4000 has been designed for measuring any application in any industry and is often referred to as "mother of all electromagnetic flowmeters", suitable for all standard and special applications, including "commercial" use according to European Directive MI-001 and -005. The level of precision complies with the industry demands, furthermore does the modular concept allow tailormade solutions.

All meters are passing specific trials, measurements and tests that go beyond the legal specifications - and on which our customers can rely 100%. For example, we subject the converter electronics to a series of extensive temperature change tests, in which the converter is exposed to cyclical fluctuations (-20...+65°C / -4...+149°F) Every meter that leaves our factory is first wetcalibrated on our officially certified calibration rigs (EN 17025).

Communication

Electromagnetic flowmeters can be installed in random locations, demanding the instrument to be suitable for any kind of environment. These locations vary from indoor use (integrated in complex processes) to outdoor use (straight forward transport, but possibly buried or submerged). The ability to read the measured results on-site may be standard, but it does not always meet the current and actual needs of the user or operator. That is why this meter comes with optional, state-of-the-art bus communication systems. The stored data is transmitted by HART[®], Profibus, Fieldbus or Modbus, and then forwarded to a management system.

PRODUCT FEATURES

Construction

The measuring tube of the sensor has a smooth, cylindrical shape. This design, consisting of a circular cross section (no internal or moving parts) and a homogeneous magnetic field, forms the basis for a flow-optimized pipe cross section, thereby providing reliable measurements that are largely independent of the flow profile. This design allows the sensor to measure the flow bi-directional. As an additional benefit, there is no possibility for product to build up and the free cross section sized to the customer pipeline creates no pressure drop. In addition, the required straight inlet and outlet runs are only 5D and 2D. The liner of the measuring tube is made of high tech plastic or hard rubber and is resistant to vacuum, corrosion, aging and abrasion. The surface and shape of the measuring tube also minimize mineral deposits, resulting in exemplary measurement quality - even over the long term.

Design and performance

Electromagnetic flowmeters have many important advantages over their mechanical counterparts: outstanding long-term stability, maximum process reliability, no maintenance - to name just a few. As a result, these meters can deliver precise and reliable measurements for many years.

The flowmeter has extensive factory-set diagnostic functions that provide continuous self diagnosis in accordance with e.g. NAMUR, OIML, ISO/EN and MID. Converter operation is also monitored continuously, as are the sensor electrodes, the flow profile and electronic functions. Malfunctions and irregularities are detected and immediately displayed on the high-contrast, high-resolution display.

1.3 Measuring principle

An electrically conductive fluid flows inside an electrically insulating pipe through a magnetic field. This magnetic field is generated by a current, flowing through a pair of field coils. Inside of the fluid, a voltage U is generated: U = v * k * B * D

in which: v = mean flow velocity k = factor correcting for geometry B = magnetic field strength

D = inner diameter of flow meter

The signal voltage U is picked off by electrodes and is proportional to the mean flow velocity v and thus the flow rate q. A signal converter is used to amplify the signal voltage, filter it and convert it into signals for totalising, recording and output processing.

- ① Induced voltage (proportional to flow velocity)
- Electrodes
- ③ Magnetic field
- ④ Field coils

2.1 Technical data

- The following data is provided for general applications. If you require data that is more relevant to your specific application, please contact us or your local representative.
- Additional information (certificates, special tools, software,...) and complete product documentation can be downloaded free of charge from the website (Download Center).

Measuring system

Measuring principle	Faraday's law
Application range	Electrically conductive fluids
Measured value	
Primary measured value	Flow velocity
Secondary measured value	Volume flow

Design

Features	Fully welded maintenance-free sensor.
	Flange version with full bore flow tube
	Standard as well as higher pressure ratings
	Broad range of nominal sizes
	Industry specific insertion lengths
Modular construction	The measurement system consists of a flow sensor and a signal converter. It is available as compact and as separate version.
Compact version	With IFC 040 converter: 0PTIFLUX 4040 C
	With IFC 100 converter: OPTIFLUX 4100 C
	With IFC 300 converter: OPTIFLUX 4300 C
Remote version	In wall (W) mount version with IFC 100 converter : OPTIFLUX 4100 W
	In field (F), wall (W) or rack (R) mount version with IFC 300 converter: OPTIFLUX 4300 F, W or R
Nominal diameter	With IFC 040 converter: DN10 150 / 3/8 6"
	With IFC 100 converter: DN2.51200 / 1/1048"
	With IFC 300 converter: DN2.53000 / 1/10120"
Measurement range	-12+12 m/s / -40+40 ft/s

Measuring accuracy

-	
Reference conditions	Flow conditions similar to EN 29104
	Medium: water
	Electrical conductivity: \geq 300 μ S/cm
	Temperature: 1030°C / 5086°F
	Inlet section: \geq 5 DN
	Operating pressure: 1 bar / 14.5 psig
	Wet calibrated on EN 17025 accredited calibration rig by direct volume comparison
Accuracy curves	For detailed information on the measuring accuracy, see chapter "Measuring accuracy".
	Option: verification to MID MI-001
	(Only in combination with IFC 300)
	Option: calibration according to OIML R49
	(Only in combination with IFC 300)
	Related to volume flow (MV = Measured Value)
	These values are related to the pulse / frequency output
	The additional typical measuring deviation for the current output is $\pm 10~\mu A$
	With IFC 040 converter:
	v < 1 m/s / 3.3 ft/s: ± 5 mm/s
	v > 1 m/s / 3.3 ft/s: ± 0.5 % of MV
	With IFC 100 converter:
	DN2.56: ± 0.4% of MV + 1 mm/s
	DN101200: ± 0.3% of MV + 1 mm/s
	With IFC 300 converter:
	DN2.56: ± 0.3% of MV + 2 mm/s
	DN101600: ± 0.2% of MV + 1 mm/s
	DN18003000: ± 0.3% of MV + 2 mm/s
Repeatability	±0.1% of MV, minimum 1 mm/s
Long term stability	±0.1% of MV
Special calibration	Better accuracies optional

2 TECHNICAL DATA

Operating conditions

Temperature	
Process temperature	PTFE: -40+180°C / -40+356°F for remote versions
	PTFE: -40+140°C /-40+284°F for compact versions
	PFA: -40+180°C / -40+356°F for remote versions
	PFA: -40+140°C / -40+284°F for compact versions
	ETFE: -40+120°C / -40+248°F
	Hard rubber: -5+80°C / 23+176°F
	PU: -5+85°C / 23+185°F
	For Ex versions different temperatures are valid. Please check the relevant Ex documentation for details.
Ambient temperature	Standard (with aluminium converter housing):
	-40+65°C / -40+149°F (Protect electronics against self-heating with ambient temperatures above 55°C)
	Option (with stainless steel converter housing):
	-40+55°C / -40+130°F
	For Ex versions different temperatures are valid. Please check the relevant Ex documentation for details.
Storage temperature	-50+70°C / -58+158°F
Pressure	
EN 1092-1	DN22003000: PN 2.5
	DN12002000: PN 6
	DN2001000: PN 10
	DN65 and DN100150: PN 16
	DN2.550 and DN80: PN 40
	Other pressures on request
ISO insertion length	Optional for DN15600
ASME B16.5	1/1024": 150 lb RF
	Other pressures on request
JIS	DN501000: 10 K
	DN2.540: 20 K
	Other pressures on request
Vacuum load	For information on pressure limits depending on liner material see chapter "Vacuum load".
Pressure ranges for secondary	For DN25150:
containment	Pressure resistant up to 40 bar / 580 psi
	Burst pressure up to approx. 160 bar / 2320 psi
Pressure drop	Negligible

Chemical properties	
Physical condition	Electrically conductive liquids
Electrical conductivity	Water: $\geq 20 \ \mu$ S/cm
	Non water: $\geq 1 \ \mu$ S/cm
Permissible gas content (volume)	≤5%
Permissible solid content (volume)	≤ 70%

Installation condtitions

Installation	Take care that flow sensor is always fully filled
	For detailed information see chapter "Installation"
Flow direction	Forward and reverse.
	Arrow on flow sensor indicates positive flow direction.
Inlet run	≥ 5 DN
Outlet run	≥ 2 DN
Dimensions and weights	For detailed information see chapter "Dimensions and weights".

Materials

DN2.515: Stainless steel 1.4408		
DN20: GTW-S 30		
DN253000: Sheet steel, polyurethane coated		
Other materials on request		
Austenitic stainless steel		
Standard: Carbon steel, polyurethane coated		
Other materials on request		
Standard		
DN2.515: PFA		
DN20: PTFE		
DN25150: PFA		
DN2003000: ETFE		
Option		
DN200600: PTFE		
DN2001800: PU		
DN2003000: Hard rubber (Ex only)		
Other materials on request		
Standard: polyurethane coated die-cast aluminium		
Option: Stainless steel		
Standard: Hastelloy® C		
Option: Platinum, stainless steel, titanium, tantalum, low noise		
Other materials on request		

2 TECHNICAL DATA

Grounding rings	Standard
	Stainless steel
	Option
	Hastelloy [®] C, titanium, tantalum
	Grounding rings can be omitted with virtual reference option for the IFC 300 converter.
Grounding electrodes (option)	Same material as measuring electrodes.

Process connections

Flange	
EN 1092-1	DN2.53000 in PN 2.540
ASME	1/10120" in 1502500 lb RF
JIS	DN2.51000 in JIS 1020 K
Design of gasket surface	RF
	Other sizes or pressure ratings on request

Electrical connections

Signal cable	
Type A (DS)	Standard cable, double shielded. Max. length: 600 m / 1950 ft (dep. on electrical conductivity and measuring sensor). See documentation of the converter for more information.
Type B (BTS)	Optional cable, triple shielded. Max. length: 600 m / 1950 ft (dep. on electrical conductivity and measuring sensor). See documentation of the converter for more information.

Approvals and certificates

CE	
	This device fulfills the statutory requirements of the EC directives. The manufacturer certifies successful testing of the product by applying the CE mark.
Electromagnetic compatibility	Directive: 2004/108/EC, NAMUR NE21/04
	Harmonized standard: EN 61326-1 : 2006
Low voltage directive	Directive: 2006/95/EC
	Harmonized standard: EN 61010 : 2001
Pressure equipment directive	Directive: 97/23/EC
	Category I, II or SEP
	Fluid group 1
	Production module H

Hazardous areas									
ATEX	Please check the relevant Ex documentation for details.								
	Compact version with IFC 040 C converter								
	II 2 GD								
	Compact version with IFC 100 C converter								
	II 2 GD								
	Compact version with IFC 300 C converter								
	II 2 GD or II 2(1) GD								
	Remote version								
	II 2 GD								
FM	In combination with IFC 300 converter								
	Class I, Div 2, groups A, B, C and D								
	Class II, Div 2, groups F and G								
CSA	In combination with IFC 300 converter								
	Class I, Div 2, groups A, B, C and D								
IEC-Ex	Compact version with IFC 100 converter								
	IIC T4								
NEPSI	GYJ05234 / GYJ05237								
	Ex me ia IIC T6T3								
	Ex de ia IIC T6T3								
	Ex qe ia IIC T6T3								
	Ex e ia IIC T6T3								
Other approvals and standards									
Custody transfer	Standard: without verification								
	Only in combination with IFC 300 converter								
	For diameters: DN25500 (other diameters on request)								
	Cold water								
A C-Ex EPSI her approvals and standard Istody transfer Istody transfer of concentration category acc. to C 529 / EN 60529	MI-001 type examination certificate								
	OIML R49 certificate of conformity								
	Conformity with ISO 4064 and EN 14154								
	Liquids other than water								
	MI-005 type examination certificate								
	OIML R117 certificate of conformity								
Hygiene	PFA liner is FDA approved.								
Protection category acc. to	Standard: IP 66/67 (NEMA 4/4X/6)								
1EC 327 / EN 60327	Option: IP 68 (NEMA 6P)								
	IP 68 is only available for separate design and with a stainless steel connection box								
Vibration resistance	IEC 68-2-6								
Random vibration test	IEC 68-2-34								
Shock test	IEC 68-2-27								

2.2 Vacuum load

Diameter	Max. pressure	Vacuu	m load	in mba	r abs. a	at a pro	cess te	mperat	ure of			
[mm]	[bar]	40°C	60°C	70°C	80°C	90°C	100°C	120°C	140°C	180°C		
Liner in PTFE												
DN1020	50	0	0	0	0	0	0	500	750	1000		
DN200300	50	500	750	1000	1000	1000	1000	1000	1000	1000		
DN350600	50	800	1000	1000	1000	1000	1000	1000	1000	1000		
Liner in PFA												
DN2.5150	50	0	0	0	0	0	0	0	0	0		
Liner in ETFE												
DN2002000	150	100	100	100	100	100	100	100	-	-		
Liner in Hard rubber	-											
DN200300	150	250	400	400	400	-	-	-	-	-		
DN3503000	150	500	600	600	600	-	-	-	-	-		
Liner in PU												
DN2001800	1500	500	600	-	-	-	-	-	-	-		

Diameter	Max. pressure	Vacuu	m load	in psia	at a pro	ocess to	empera	iture of			
[inches]	[psi]	104°F	140°F	158°F	176°F	194°F	212°F	248°F	284°F	356°F	
Liner in PTFE	1										
3/83/4"	725	0	0	0	0	0	0	7.3	10.9	14.5	
812"	725	7.3	10.9	14.5	14.5	14.5	14.5	14.5	14.5	14.5	
1424"	725	11.6	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	
Liner in PFA											
1/106"	725	0	0	0	0	0	0	0	0	0	
Liner in ETFE											
872"	2176	1.5	1.5	1.5	1.5	1.5	1.5	1.5	-	-	
Liner in Hard rubbe	-										
812"	2176	3.6	5.8	5.8	5.8	-	-	-	-	-	
14120"	2176	7.3	8.7	8.7	8.7	-	-	-	-	-	
Liner in PU											
872"	21756	7.3	8.7	-	-	-	-	-	-	-	

2.3 MI-001

All new designs of water meters that are to be used for legal purposes in Europe require certification under the Measuring Instruments Directive (MID) 2004/22/EC. Annex MI-001 of the MID applies to: water meters intended for the measurement of volume of clean, cold or heated water in residential, commercial and light industrial use. A type examination certificate to the MID certificate is valid in all the countries of the European Union.

TheOPTIFLUX 4300 has a type examination certificate to the MI-001 for DN25...300.

The EC type examination certificate for the OPTIFLUX 4300 is valid for the compact and the remote version and applies for forward and reverse flow.

According to MI-001 the maximum permissible error on volumes delivered between Q2 (transitional) flow rate and Q4 (overload) flow rate is $\pm 2\%$. The maximum permissible error on volumes delivered between Q1 (minimum) flow rate and Q2 (transitional) flow rate is $\pm 5\%$.

Figure 2-1: ISO flow rates added to figure as comparison towards MID X: Flow rate; Y: Maximum measuring error [%]

2 TECHNICAL DATA

2.4 MI-005

MI-005

DN	Span (R)		Flow rat	te [m ³ /h]	
		minimum Q1	Transitional Q2	Permanent Q3	Overload Q4
15	20	0.27	0.432	5.4	6.8
25	20	1.00	1.600	20.0	25.0
32	20	1.60	2.504	31.3	39.1
40	20	1.60	2.504	31.3	39.1
50	20	2.50	4.000	50.0	62.5
65	20	6.30	10.000	125.0	156.3
80	20	10.00	16.000	200.0	250.0
100	20	15.60	25.000	312.5	390.6
125	20	25.00	40.000	500.0	625.0
150	20	25.00	40.000	500.0	625.0
200	20	62.50	100.000	1250.0	1562.5
250	20	100.00	160.000	2000.0	2500.0
300	20	156.00	250.000	3125.0	3906.3
350	20	156.00	250.000	3125.0	3906.3
400	20	250.00	400.000	5000.0	6250.0
450	20	250.00	400.000	5000.0	6250.0
500	10	787.50	1260.000	7875.0	9843.8

2.5 OIML R49

The OIML R49 recommendation (2006) concerns water meters intended for the metering of cold potable water and hot water. The OPTIFLUX 4300 has a certificate of compliance with OIML R49, issued by NMi.

The OIML R49 recommendation sets out the conditions to which water meters shall comply to meet the requirements of the services of legal metrology in countries where these instruments are subject to state controls.

The measuring range of the water meter is determined by Q3 (nominal flow rate) and "R" (ratio). The OPTIFLUX 4300 meets the requirements for water meters of accuracy class 1 and 2.

For accuracy class 1, the maximum permissible error for water meters is $\pm 1\%$ for the upper flow rate zone and $\pm 3\%$ for the lower flow rate zones.

For accuracy class 2, the maximum permissible error for water meters is $\pm 2\%$ for the upper flow rate zone and $\pm 5\%$ for the lower flow rate zones.

Figure 2-2: ISO flow rates added to figure as comparison towards OIML X: Flow rate; Y: Maximum measuring error [%]

(1) \pm 3% for class 1, \pm 5% for class 2 devices

2 ±1% for class 1, ±2% for class 2 devices

Q1 = Q3 / R Q2 = Q1 * 1.6 Q3 = Q1 * R Q4 = Q3 * 1.25

2 TECHNICAL DATA

2.6 OIML R117

OIML R117, Class 0.3

DN	Span (R)	Flow rate [m ₃ /	Flow rate [m ₃ /h]											
		Minimum Q1	Transitional Q2	Permanent Q3	Overload Q4									
25	20	1.0	1.6	20	25									
50	20	2.5	4.0	50	63									
80	20	10.0	16	200.0	250.0									
100	20	15.6	25	312.5	390.6									
150	20	25.0	40	500.0	625.0									
250	20	100.0	160	2000.0	2500.0									
500	10	787.5	1260	7875.0	9844.0									

2.7 Dimensions and weights

Remote version			a = 77 mm / 3.1"					
Remote version								
			b = 139 mm / 5.5" ① c = 106 mm / 4.2"					
		W N	Total height = H + a					
Compact version with IFC 300	b	C L	a = 155 mm / 6.1"					
IFC 300			b = 230 mm / 9.1" ①					
			c = 260 mm / 10.2"					
			Total height = H + a					
Compact version with	L		a = 165 mm / 6.5"					
Compact version with IFC 040	b b		$a = 136 \text{ mm} / 5.3^{\circ}$					
			c = 208 mm / 8.2"					
	a		Total height = H + a					
		w w						
Compact version with IFC 100 (0°)	, c , L	. b .	a = 82 mm / 3.2"					
IFC 100 (0°)			b = 161 mm / 6.3"					
	a a		c = 257 mm / 10.1" ①					
		H	Total height = H + a					
Compact version with IFC 100 (45°)	b s	c c	a = 186 mm / 7.3"					
IFC 100 (45°)			b = 161 mm / 6.3"					
		a	c = 184 mm / 2.7" ①					
			Total height = H + a					
	nding on the used cable glands							

The value may vary depending on the used cable glands.

- All data given in the following tables are based on standard versions of the sensor only.
- Especially for smaller nominal sizes of the sensor, the converter can be bigger than the sensor.
- Note that for other pressure ratings than mentioned, the dimensions may be different.
- For full information on converter dimensions see relevant documentation.

EN 1092-1

Approx.		ons [mm]	Dimensi		nal size	Nomir
weight [kg	W	Н	L		PN [bar]	DN
			IS0	DIN		
3	90	142	-	130	40	2.5
3	90	142	-	130	40	4
3	90	142	-	130	40	6
6	90	106	-	130 ①	40	10
6	95	106	200	130 ①	40	15
7	105	158	200	150	40	20
4	115	140	200	150	40	25
5	140	157	200	150	40	32
5	150	166	200	150	40	40
9	165	186	200	200	40	50
9	185	200	200	200	16	65
12	200	209	200	200	40	80
15	220	237	250	250	16	100
19	250	266	250	250	16	125
27	285	300	300	300	16	150
34	340	361	350	350	10	200
48	395	408	450	400	10	250
58	445	458	500	500	10	300
78	505	510	550	500	10	350
101	565	568	600	600	10	400
111	615	618	-	600	10	450
130	670	671	-	600	10	500
165	780	781	-	600	10	600
248	895	898	-	700	10	700
331	1015	1012	-	800	10	800
430	1115	1114	-	900	10	900
507	1230	1225	-	1000	10	1000
555	1405	1417	-	1200	6	1200
765	1630	1619	-	1400	6	1400
1035	1830	1819	-	1600	6	1600
1470	2045	2027	-	1800	6	1800
1860	2265	2259	-	2000	6	2000

150 mm for construction according to order code VN03.

150 lb flanges

Nomin	al size	Di	mensions [inch	es]	Approx. weight
ASME	PN [psi]	L	Н	W	[lb]
1/10"	284	5.12	5.59	3.50	6
1/8"	284	5.12	5.59	3.50	6
1⁄4"	284	5.12	5.59	3.50	6
3/8"	284	5.12 ①	5.08	3.50	12
1/2"	284	5.12 ①	5.08	3.50	12
3⁄4"	284	5.91	5.28	3.88	18
1"	284	5.91	5.39	4.25	7
1 ¼"	284	5.91	5.98	4.62	7
1 1⁄2"	284	5.91	6.10	5.00	11
2"	284	7.87	7.05	5.98	18
3"	284	7.87	8.03	7.50	26
4"	284	9.84	9.49	9.00	40
5"	284	9.84	10.55	10.0	49
6"	284	11.81	11.69	11.0	64
8"	284	13.78	14.25	13.5	95
10"	284	15.75	16.3	16.0	143
12"	284	19.69	18.78	19.0	207
14"	284	27.56	20.67	21.0	284
16"	284	31.50	22.95	23.5	364
18"	284	31.50	24.72	25.0	410
20"	284	31.50	26.97	27.5	492
24"	284	31.50	31.38	32.0	675

1 5.91" for construction according to order code VN03

- Pressures at 20°C / 68°F.
- For higher temperatures, the pressure and temperature ratings are as per ASME B16.5 (up to 24") or ASME B16.47 (>24").
- Dimensions for other sizes on request.

2 TECHNICAL DATA

300 lb flanges

Nomir	nal size	Di	mensions [inch	es]	Approx. weight
ASME	PN [psi]	L	Н	W	[lb]
1/10"	741	5.12	5.59	3.75	6
1/8"	741	5.12	5.59	3.75	6
1⁄4"	741	5.12	5.59	3.75	6
3/8"	741	5.12 ①	5.24	3.75	15
1⁄2"	741	5.12 ①	5.24	3.75	15
3⁄4"	741	5.91	5.67	4.62	20
1"	741	5.91	5.71	4.87	11
1 1⁄2"	741	7.87	6.65	6.13	13
2"	741	9.84	7.32	6.50	22
3"	741	9.84	8.43	8.25	31
4"	741	11.81	10.00	10.0	44
6"	741	12.60	12.44	12.5	73
8"	741	15.75	15.04	15.0	157
10"	741	19.69	17.05	17.5	247
12"	741	23.62	20.00	20.5	375
14"	741	27.56	21.65	23.0	474
16"	741	31.50	23.98	25.5	639
20"	741	31.50	28.46	30.5	937
24"	741	31.50	33.39	36.0	1345

1 5.91" for construction according to order code VN03

- Pressures at 20°C / 68°F.
- For higher temperatures, the pressure and temperature ratings are as per ASME B16.5 (up to 24") or ASME B16.47 (>24").
- Dimensions for other sizes on request.

3.1 Intended use

The measurement of volumetric flowrate of electrically conductive fluids. Basic measurement is the flow velocity upon which all other measurements are based.

3.2 Installation conditions

3.2.1 Inlet and outlet

Figure 3-1: Recommended inlet and outlet sections (1) \geq 5 DN

② ≥ 2 DN

3.2.2 Mounting position

Figure 3-2: Mounting position

3 INSTALLATION

3.2.3 Flange deviation

Max. permissible deviation of pipe flange faces: $L_{max} - L_{min} \le 0.5 \text{ mm} / 0.02"$

Figure 3-3: Flange deviation

① L_{max}

2 L_{min}

3.2.4 T-section

Figure 3-4: Distance after T-sections (1) \geq 10 DN

3.2.5 Vibration

Figure 3-5: Avoid vibrations

3.2.6 Magnetic field

Figure 3-6: Avoid magnetic fields

3.2.7 Bends

Figure 3-7: Installation in bending pipes

Figure 3-8: Installation in bending pipes

3.2.8 Open discharge

Figure 3-9: Installation before an open discharge

3.2.9 Control valve

Figure 3-10: Installation before control valve

3.2.10 Air venting

Figure 3-11: Air venting ① ≥ 5 m ② Air ventilation point

3.2.11 Pump

Figure 3-12: Installation after pump

4.1 Safety instructions

All work on the electrical connections may only be carried out with the power disconnected. Take note of the voltage data on the nameplate!

Observe the national regulations for electrical installations!

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

Observe without fail the local occupational health and safety regulations. Any work done on the electrical components of the measuring device may only be carried out by properly trained specialists.

Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

4.2 Grounding

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

① Metal pipelines, not internally coated. Grounding without grounding rings.

② Metal pipelines with internal coating and non-conductive pipelines. Grounding with grounding rings.

Figure 4-2: Different types of grounding rings

- 1 Grounding ring number 1
- ② Grounding ring number 2
- (3) Grounding ring number 3

Grounding ring number 1:

• 3 mm / 0.1" thick (tantalum: 0.5 mm / 0.1")

Grounding ring number 2:

- 3 mm / 0.1" thick
- Prevents damage to the flanges during transport and installation
- Especially for flow sensors with PTFE liner

Grounding ring number 3:

- 3 mm / 0.1" thick
- With cylindrical neck (length 30 mm / 1.25" for DN10...150 / 3/8...6")
- Prevents damage to the liner when abrasive liquids are used

4.3 Virtual reference for IFC 300 (C, W and F version)

The virtual reference option on the IFC 300 flow converter provides complete isolation of the measurement circuit.

The benefits of virtual reference are that grounding rings or grounding electrodes can be omitted, safety increases by reducing the number of potential leakage points and the installation of the flowmeters is much easier.

Figure 4-3: Virtual reference

Possible if:

- \geq DN10
- Electrical conductivity \geq 200 µS/cm
- Electrode cable max. 50m., type DS

NOTES 5

								_							
								_							
					 		 	_							
								_							
 -	 		 	 	 	 	 	 							

KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature meters
- Pressure meters
- Analysis products
- Measuring systems for the oil and gas industry
- Measuring systems for sea-going tankers

Head Office KROHNE Messtechnik GmbH Ludwig-Krohne-Str. 5 D-47058 Duisburg (Germany) Tel.:+49 (0)203 301 0 Fax:+49 (0)203 301 10389 info@krohne.de

The current list of all KROHNE contacts and addresses can be found at: www.krohne.com

